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S u m m a r y  

The localization model of rubber elasticity is applied to the 

deformation behavior of a network formed by cross-linking a 

strained melt. 

In t roduc t ion  

Recently, Kramer et al. (1,2) made an important study of the 

effect of interactions between chains on the equilibrium elasticity 

of cross-linked networks. An uncross-linked melt was isothermally 

stretched and then held at a constant strain at a temperature above 

its Tg. The stress was allowed to relax until the plateau region was 

reached. The sample was then quenched below Tg and cross- 

linked. It was then reheated to the original temperature and after 

some time to a still higher temperature to accelerate relaxation. 

Finally, the sample was cooled back to the original temperature. 

The final force was found to be within 7% of the value measured in 

the plateau region prior to cross-linking. Kramer's experiment 

demonstrates, without using any theoretical model, that the chain 

interactions existing prior to cross-linking make a substantial 

contribution to equilibrium network elasticity. 

An extension of Kramer's work (3) involved stretching 

polybutadiene at Tg + 8K, cross-linking it by irradiation at Tg - 25K, 

reheating the sample to Tg + 8K and then releasing it to allow 

retraction until the force was zero. The network was subsequently 

swollen to equilibrium and then dried. Finally, it was deformed in 

various directions from this state of ease and its stress-strain 

behavior measured. Below we apply the localization theory of 

rubber elasticity to Kramer's experiments. 
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The Localization Model of Rubber Elasticity 

Gaylord and Douglas (4) recently developed a simple scaling 

theory of rubber elasticity which accounts for the minimal features 

of a cross-linked network: the connectivity of the network chain 

segments and the 'localization' of chain segments due to interactions 

(e.g., entanglements, packing) with surrounding network chains. 

Assuming that the cross-links deform in an affine manner and that 

the localization parameter deforms in a scaled affine manner, the 

free energy of deformation expression for a constant volume 

deformation equals (4), 

AFel = A ~, [Ai 2 -  1]+ B ~ [Ai -2~ - 1] 
i =x ,y ,z i =x ,y ,z 

(i) 

where A = (vRo2/N) is proportional to the number of chains in the 

network and B = (vN/~o 2) is proportional to the square of the 

segment density. Gaylord and Douglas argue that in dense rubbers, 
I~ equals - 1/2 if the localization volume of a network chain is 

constant. This is plausible because localization ultimately derives 

from the strain invariant hard core volume of the physical chain. 

Application of the Localization Model to the Kramer Experiments 

In applying the localization theory to Kramer's data, the 

simplest possible assumption is to use eq. 1 with the deformation of 

the localization contribution to the free energy taken relative to the 

unstrained melt state and the deformation of the connectivity 

contribution taken relative to the strained state at which cross- 

linking occurs. This gives 

2 1] + B ~ [Ai,1-2/3 Z~ = A '~".__ [Zi ,2 - - 11 
i =x ,y ,z i =x ,y ,z 

(2) 

where ~.i,1 is the extension ratio in the ith direction, relative to the 

unstrained uncross-linked state and ~.i,2 is the extension ratio in the 

ith direction relative to the state of strain at which cross-linking 

occurred.  
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The state of  ease, ~s, that  results  f rom re leas ing the sample  

after cross- l inking at ~.o is calculated by lett ing ~x,2 = (~s/~.o), ~,y,2 = 

Xz,2 = (~.x,2) -1/2 and 7~x,1 = ks, ~y,1 = ~.z,1 = (kx,1) -1/2 and taking 

OFel/3~, s = 0 to obtain 

0 = (~.o 3 - ~.s 3) - [B~.o2(~.s31 ~ - 1)/(P~,s2~ -1) (3) 

where  P = (A/B). 

Equat ion  2 can be used to ca lcula te  the stress-strain behavior  

of  the sample when it is strained subsequent  to being in the state of 

ease. Two cases will be considered:  

(a) Stretching parallel to the original direct ion of  strain. 

~-x,2 = (~,s/~,o) ~,, ~.y,2 = ~,z,2 = (~,s/ko) "1/2~,'1/2 

~.x,1 = ~.s ~, ~,y,1 = ~,z,1 = ~,s -1/2~,-1/2 

The stress then equals  

Ol I = 2B[P(r2~. _ r-l~-2) + [~(ksl3 ~,B-I _ ~.s-213 ~-21]-1)] (4) 

where  r = (Tts/ko). 

(b) Stretching perpendicular  to the original  direct ion of  strain. In 

this case 

~.x,2 = (~Ls/~-o) ~L'l/2, ~.y,2 = (~.s/~,o)-l/2~L; ~.z,2 = (~Ls/~Lo) -1/2~.-1/2 

2Lx,1 = ~.s2L "1/2, ~Ly,1 = ~Ls-1/2;L, ~.z,1 = ~,s-1/2~ -1/2 

which  gives the stress as 

o•  = B{P[2r-12t - (r 2 + r-1)~. -2] + [~[(Tts I~ + ~.s-2~3)~LI 3-1 - 2~.s [~ ~L-2I 3-1] } (5) 

In this case 
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Comparison of Theory and Experiment 
Using eq. 3, [~ = - 1/2 and the experimental ko, = 1.962, ~.s = 

1.247 values, P was determined to be 0.150. Equation 4 with 13 = 

-1/2 was then best-fitted to the parallel deformation data, resulting 

in a B value of 1.648 and a 0.032 standard deviation. While eq. 5 

can be independent ly fitted to the perpendicular deformation data 

(giving a B value of 1.496 and a 0.016 standard deviation) a 

molecular model of rubber elasticity should be constitutive and 

therefore, the B value obtained using eq. 4 was used in eq. 5 with 
13 = - 1/2 to produce the perpendicular deformation curve without 

any data fitting. Both curves are shown in Figure 1. 
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Figure 1. Experimental  and theoretical stress-strain plots of parallel 
and perpendicular stretching of a network cross-linked in the 
strained state. (o) _L strain data, (A) II strain data, ( . . . .  ) 611 [eq. 4], 

( ) 6• [eq. 5]. 
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In view of our use of the simplified 'two-network' approach (2) in 

eq. 2, the qualitative agreement between the predicted and 

observed anisotropic elastic behavior is fairly good (and much better 
than one obtains using either 13 = 1, corresponding to the Mooney- 

Rivlin equation, or 13 = -1, corresponding to the Gaussian composite 

network). The small value of P = (A/B), indicating that cross-links 

play a much smaller role than chain interactions, is also in 

accordance with experimental findings (2). 

Conclusion 

The localization model of rubber elasticity successfully 

reproduces the qualitative features of the deformation behavior of a 

network formed by cross-linking a strained melt. The model has 

previously performed well in the cases of uniaxial extension- 

compression and biaxial deformation (4). Other than the case of 

network swelling behavior, which cannot at the present time be 

analyzed using any rubber elasticity theory (5), the model's success 

is quite gratifying, especially in view of its great conceptual and 

mathematical simplicity. Further testing of the model with 

experiments on other types of deformation is currently underway 

(6). 
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5. No model of rubber elasticity should be tested using swelling 

measurements such as the dilation modulus because the Flory 

theory of network swelling, which is used in conjunction with 

a model, has fundamental difficulties. For example, 
experiments indicate that the Flory Z parameter is dependent on 

both concentration and cross-link density, in conflict with the 

Flory assumption. Additionally, the Flory assumption that the 

total free energy is separable into a sum of elastic and mixing 

contributions has no logical basis and has been theoretically 

criticized. 
6. Preliminary testing with a torsion deformation experiment by 

G. B. McKenna of the NBS shows reasonable agreement with the 

localization model prediction. 
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